Search results
Results from the WOW.Com Content Network
Today the commutative property is a well-known and basic property used in most branches of mathematics. The first recorded use of the term commutative was in a memoir by François Servois in 1814, [ 1 ] [ 10 ] which used the word commutatives when describing functions that have what is now called the commutative property.
Basic arithmetic properties (zoom in for induction proofs) This article contains mathematical proofs for some properties of addition of the natural numbers: the additive identity, commutativity, and associativity. These proofs are used in the article Addition of natural numbers.
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative.
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory . Group theory
In commutative ring theory, numbers are often replaced by ideals, and the definition of the prime ideal tries to capture the essence of prime numbers. Integral domains, non-trivial commutative rings where no two non-zero elements multiply to give zero, generalize another property of the integers and serve as the proper realm to study divisibility.
Associativity is a property of some logical connectives of truth-functional propositional logic. The following logical equivalences demonstrate that associativity is a property of particular connectives. The following (and their converses, since ↔ is commutative) are truth-functional tautologies. [citation needed] Associativity of disjunction
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".