enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area bounded by the intersection of a line and a parabola is 4/3 that of the triangle having the same base and height (the quadrature of the parabola); The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes;

  4. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    Archimedes' idea is to use the law of the lever to determine the areas of figures from the known center of mass of other figures. [1]: 8 The simplest example in modern language is the area of the parabola. A modern approach would be to find this area by calculating the integral

  5. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    The area of the surface of a sphere is equal to four times the area of the circle formed by a great circle of this sphere. The area of a segment of a parabola determined by a straight line cutting it is 4/3 the area of a triangle inscribed in this segment. For the proofs of these results, Archimedes used the method of exhaustion attributed to ...

  6. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere. The area of a segment of the parabola cut from it by a straight line is 4/3 the area of the triangle inscribed in this segment. For the proof of the results Archimedes used the Method of exhaustion of Eudoxus.

  7. Archimedes - Wikipedia

    en.wikipedia.org/wiki/Archimedes

    In Quadrature of the Parabola, Archimedes proved that the area enclosed by a parabola and a straight line is ⁠ 4 / 3 ⁠ times the area of a corresponding inscribed triangle as shown in the figure at right. He expressed the solution to the problem as an infinite geometric series with the common ratio ⁠ 1 / 4 ⁠:

  8. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Archimedes used the method of exhaustion to calculate the area under a parabola in his work Quadrature of the Parabola. Laying the foundations for integral calculus and foreshadowing the concept of the limit, ancient Greek mathematician Eudoxus of Cnidus ( c. 390–337 BC ) developed the method of exhaustion to prove the formulas for cone and ...

  9. Timeline of calculus and mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_calculus_and...

    3rd century BC - Archimedes develops a concept of the indivisibles—a precursor to infinitesimals—allowing him to solve several problems using methods now termed as integral calculus. Archimedes also derives several formulae for determining the area and volume of various solids including sphere, cone, paraboloid and hyperboloid. [2]