Search results
Results from the WOW.Com Content Network
Like the North Magnetic Pole, the North Geomagnetic Pole attracts the north pole of a bar magnet and so is in a physical sense actually a magnetic south pole. It is the center of the 'open' magnetic field lines which connect to the interplanetary magnetic field and provide a direct route for the solar wind to reach the ionosphere.
Free 3D visualization and communication software for integrated, multi-disciplinary geoscience and mining data and models, which also connects to Python through geoh5py, its open-source API Mira Geoscience Ltd. Free / Proprietary Microsoft Windows: C++: Free license key is automatically emailed upon request, and the software is permanently free
A magnet's North pole is defined as the pole that is attracted by the Earth's North Magnetic Pole, in the arctic region, when the magnet is suspended so it can turn freely. Since opposite poles attract, the North Magnetic Pole of the Earth is really the south pole of its magnetic field (the place where the field is directed downward into the ...
Magnetic north versus ‘true north’ At the top of the world in the middle of the Arctic Ocean lies the geographic North Pole, the point where all the lines of longitude that curve around Earth ...
Compass needles in the Northern Hemisphere point toward the magnetic North Pole, although the exact location of it changes from time to time as the contours of Earth’s magnetic field also change.
The south magnetic pole, also known as the magnetic south pole, is the point on Earth's Southern Hemisphere where the geomagnetic field lines are directed perpendicular to the nominal surface. The Geomagnetic South Pole, a related point, is the south pole of an ideal dipole model of the Earth's magnetic field that most closely fits the Earth's ...
Magnetic declination (also called magnetic variation) is the angle between magnetic north and true north at a particular location on the Earth's surface. The angle can change over time due to polar wandering .
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.