enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.

  3. Circle packing in a circle - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_circle

    Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle. Table of solutions, 1 ≤ n ≤ 20 [ edit ]

  4. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing different rectangles in a rectangle: The problem of packing multiple rectangles of varying widths and heights in an enclosing rectangle of minimum area (but with no boundaries on the enclosing rectangle's width or height) has an important application in combining images into a single larger image. A web page that loads a single larger ...

  5. Circle packing in a square - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_square

    Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]

  6. Rectangle packing - Wikipedia

    en.wikipedia.org/wiki/Rectangle_packing

    Rectangle packing is a packing problem where the objective is to determine whether a given set of small rectangles can be placed inside a given large polygon, such that no two small rectangles overlap. Several variants of this problem have been studied.

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The nine-point circle is tangent to the incircle and excircles. In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are: [28] [29] The midpoint of each side of the triangle; The foot ...