Search results
Results from the WOW.Com Content Network
A bit array (also known as bitmask, [1] bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure . A bit array is effective at exploiting bit-level parallelism in hardware to perform operations quickly.
Programs that do raster-to-vector conversion may accept bitmap formats such as TIFF, BMP and PNG. The output is a vector file format. Common vector formats are SVG, DXF, EPS, EMF and AI. Vectorization can be used to update images or recover work. Personal computers often come with a simple paint program that produces a bitmap output file.
Arbitrary-length heterogenous arrays with end-marker Arbitrary-length key/value pairs with end-marker Structured Data eXchange Formats (SDXF) Big-endian signed 24-bit or 32-bit integer Big-endian IEEE double Either UTF-8 or ISO 8859-1 encoded List of elements with identical ID and size, preceded by array header with int16 length
In computer science, a mask or bitmask is data that is used for bitwise operations, particularly in a bit field.Using a mask, multiple bits in a byte, nibble, word, etc. can be set either on or off, or inverted from on to off (or vice versa) in a single bitwise operation.
A bitmap is a type of memory organization or image file format used to store digital images. The term bitmap comes from the computer programming terminology, meaning just a map of bits, a spatially mapped array of bits. Now, along with pixmap, it commonly refers to the similar concept of a spatially mapped array of pixels.
A bit field is distinguished from a bit array in that the latter is used to store a large set of bits indexed by integers and is often wider than any integral type supported by the language. [citation needed] Bit fields, on the other hand, typically fit within a machine word, [3] and the denotation of bits is independent of their numerical ...
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
Bagwell [1] presented a time and space efficient solution for tries named Array Mapped Tree (AMT). The Hash array mapped trie (HAMT) is based on AMT. The compact trie node representation uses a bitmap to mark every valid branch – a bitwise trie with bitmap.