Search results
Results from the WOW.Com Content Network
Each data bit is included in a unique set of 2 or more parity bits, as determined by the binary form of its bit position. Parity bit 1 covers all bit positions which have the least significant bit set: bit 1 (the parity bit itself), 3, 5, 7, 9, etc. Parity bit 2 covers all bit positions which have the second least significant bit set: bits 2 ...
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
The total distance between any two binary strings is then the total number of positions at which the corresponding bits are different, called the Hamming distance. [1] [2] Hamming spaces are named after American mathematician Richard Hamming, who introduced the concept in 1950. [3] They are used in the theory of coding signals and transmission.
Note that bit/s is a more widespread unit of measurement for the information rate, implying that it is synonymous with net bit rate or useful bit rate exclusive of error-correction codes. See also [ edit ]
The Hamming weight is named after the American mathematician Richard Hamming, although he did not originate the notion. [5] The Hamming weight of binary numbers was already used in 1899 by James W. L. Glaisher to give a formula for the number of odd binomial coefficients in a single row of Pascal's triangle. [6]
As mentioned above, there are a vast number of error-correcting codes that are actually block codes. The first error-correcting code was the Hamming(7,4) code, developed by Richard W. Hamming in 1950. This code transforms a message consisting of 4 bits into a codeword of 7 bits by adding 3 parity bits. Hence this code is a block code.
There also exists a Las Vegas construction that takes a random linear code and checks if this code has good Hamming distance, but this construction also has an exponential runtime. For sufficiently large non-prime q and for certain ranges of the variable δ, the Gilbert–Varshamov bound is surpassed by the Tsfasman–Vladut–Zink bound .
The codewords in a linear block code are blocks of symbols that are encoded using more symbols than the original value to be sent. [2] A linear code of length n transmits blocks containing n symbols. For example, the [7,4,3] Hamming code is a linear binary code which represents 4-bit messages using 7-bit codewords. Two distinct codewords differ ...