Search results
Results from the WOW.Com Content Network
A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line ...
A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative. The slope of this line is (+) ().
The red curve shows the function f, and the blue lines are the secants. For this particular case, the secant method will not converge to the visible root. In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f.
[b] Even though the tangent line only touches a single point at the point of tangency, it can be approximated by a line that goes through two points. This is known as a secant line. If the two points that the secant line goes through are close together, then the secant line closely resembles the tangent line, and, as a result, its slope is also ...
This line is a secant or chord of the graph of the function f. In point-slope form, its equation is given by = () (). Now choose c k to be the x-intercept of this line, that is, the value of x for which y = 0, and substitute these values to obtain
Thus the lengths of the segments from P to the two tangent points are equal. By the secant-tangent theorem, the square of this tangent length equals the power of the point P in the circle C. This power equals the product of distances from P to any two intersection points of the circle with a secant line passing through P.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
The idea to combine the bisection method with the secant method goes back to Dekker (1969).. Suppose that we want to solve the equation f(x) = 0.As with the bisection method, we need to initialize Dekker's method with two points, say a 0 and b 0, such that f(a 0) and f(b 0) have opposite signs.