Search results
Results from the WOW.Com Content Network
Stellar parallax is the apparent shift of position of any nearby star (or other object) against the background of distant stars. By extension, it is a method for determining the distance to the star through trigonometry, the stellar parallax method .
Aberration is distinct from parallax, which is a change in the apparent position of a relatively nearby object, as measured by a moving observer, relative to more distant objects that define a reference frame. The amount of parallax depends on the distance of the object from the observer, whereas aberration does not.
A parsec is the distance from the Sun to an astronomical object that has a parallax angle of one arcsecond (not to scale). The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to 3.26 light-years or 206,265 astronomical units (AU), i.e. 30.9 trillion kilometres (19.2 trillion miles).
Stellar parallax motion from annual parallax. Half the apex angle is the parallax angle. Parallax is an angle subtended by a line on a point. In the upper diagram, the Earth in its orbit sweeps the parallax angle subtended on the Sun. The lower diagram shows an equal angle swept by the Sun in a geostatic model.
Stellar parallax motion from annual parallax. Half the apex angle is the parallax angle. Parallax is an angle subtended by a line on a point. In the upper diagram, the Earth in its orbit sweeps the parallax angle subtended on the Sun. The lower diagram shows an equal angle swept by the Sun in a geostatic model.
In stellar and galactic astronomy, the standard distance is 10 parsecs (about 32.616 light-years, 308.57 petameters or 308.57 trillion kilometres). A star at 10 parsecs has a parallax of 0.1″ (100 milliarcseconds).
Spectroscopic parallax or main sequence fitting [1] is an astronomical method for measuring the distances to stars. Despite its name, it does not rely on the geometric parallax effect. The spectroscopic parallax technique can be applied to any main sequence star for which a spectrum can be recorded.
The mass/luminosity relation is important because it can be used to find the distance to binary systems which are too far for normal parallax measurements, using a technique called "dynamical parallax". [8] In this technique, the masses of the two stars in a binary system are estimated, usually in terms of the mass of the Sun.