Search results
Results from the WOW.Com Content Network
Graph theory is also widely used in sociology as a way, for example, to measure actors' prestige or to explore rumor spreading, notably through the use of social network analysis software. Under the umbrella of social networks are many different types of graphs. [ 17 ]
One can define the adjacency matrix of a directed graph either such that a non-zero element A ij indicates an edge from i to j or; it indicates an edge from j to i. The former definition is commonly used in graph theory and social network analysis (e.g., sociology, political science, economics, psychology). [5]
A line graph has an articulation point if and only if the underlying graph has a bridge for which neither endpoint has degree one. [2] For a graph G with n vertices and m edges, the number of vertices of the line graph L(G) is m, and the number of edges of L(G) is half the sum of the squares of the degrees of the vertices in G, minus m. [6]
An ordered pair of vertices, such as an edge in a directed graph. An arrow (x, y) has a tail x, a head y, and a direction from x to y; y is said to be the direct successor to x and x the direct predecessor to y. The arrow (y, x) is the inverted arrow of the arrow (x, y). articulation point A vertex in a connected graph whose removal would ...
The Keynesian cross diagram includes an identity line to show states in which aggregate demand equals output. In a 2-dimensional Cartesian coordinate system, with x representing the abscissa and y the ordinate, the identity line [1] [2] or line of equality [3] is the y = x line. The line, sometimes called the 1:1 line, has a slope of 1. [4]
Let X be a directed graph with 3 vertices {x,y,z} and 4 edges {a: x→y, b: y→z, c: z→x, d: z→x}. It has several cycles: One cycle is represented by the loop a+b+c. Here, the plus sign represents the fact that all edges are travelled at the same direction.
In graph theory, Graph equations are equations in which the unknowns are graphs. One of the central questions of graph theory concerns the notion of isomorphism. We ask: When are two graphs the same? (i.e., graph isomorphism) The graphs in question may be expressed differently in terms of graph equations. [1]
Given a graph, deciding whether it is the square of another graph is NP-complete. [16] Moreover, it is NP-complete to determine whether a graph is a k th power of another graph, for a given number k ≥ 2, or whether it is a k th power of a bipartite graph, for k > 2. [17]