enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  3. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  4. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    The triple product rule, known variously as the cyclic chain rule, cyclic relation, cyclical rule or Euler's chain rule, is a formula which relates partial derivatives of three interdependent variables. The rule finds application in thermodynamics, where frequently three variables can be related by a function of the form f(x, y, z) = 0, so each ...

  5. Conditional mutual information - Wikipedia

    en.wikipedia.org/wiki/Conditional_mutual_information

    3 In terms of PDFs for continuous distributions. 4 Some identities. 5 More general definition. ... usually rearranged as the chain rule for mutual information (; ...

  6. Faà di Bruno's formula - Wikipedia

    en.wikipedia.org/wiki/Faà_di_Bruno's_formula

    Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno (1855, 1857), although he was not the first to state or prove the formula.

  7. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Every stationary chain can be proved to be time-homogeneous by Bayes' rule. A necessary and sufficient condition for a time-homogeneous Markov chain to be stationary is that the distribution of X 0 {\displaystyle X_{0}} is a stationary distribution of the Markov chain.

  8. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  9. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment.