enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:

  4. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/ x from 1 to a [ 4 ] (with the area being negative when 0 < a < 1 ).

  5. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]

  6. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    They all pass through the point (0,1), but the red line (which has slope 1) is tangent to only e x there. The value of the natural log function for argument e, i.e. ln e, equals 1. The principal motivation for introducing the number e, particularly in calculus, is to perform differential and integral calculus with exponential functions and ...

  7. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The numerical value of Euler's constant, to 50 decimal places, is: [1] 0.57721 56649 01532 86060 65120 90082 40243 10421 59335 ... where log 2 is the logarithm to ...

  8. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  9. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    The constant 1.25506 is 30 ⁠ log 113 / 113 ⁠ to 5 decimal places, as π(x) ⁠ log x / x ⁠ has its maximum value at x = p 30 = 113. [ 30 ] Pierre Dusart proved in 2010: [ 31 ]