Search results
Results from the WOW.Com Content Network
Figure 1: Logic diagram for a half subtractor. The half subtractors can be designed through the combinational Boolean logic circuits [2] as shown in Figure 1 and 2. The half subtractor is a combinational circuit which is used to perform subtraction of two bits.
For example, the part of an arithmetic logic unit, or ALU, that does mathematical calculations is constructed using combinational logic. Other circuits used in computers, such as half adders, full adders, half subtractors, full subtractors, multiplexers, demultiplexers, encoders and decoders are also made by using combinational logic.
The sum-output from the second half adder is the final sum output of the full adder and the output from the OR gate is the final carry output (). The critical path of a full adder runs through both XOR gates and ends at the sum bit . Assumed that an XOR gate takes 1 delays to complete, the delay imposed by the critical path of a full adder is ...
The adder–subtractor above could easily be extended to include more functions. For example, a 2-to-1 multiplexer could be introduced on each B i that would switch between zero and B i; this could be used (in conjunction with D = 1) to yield the two's complement of A since −A = A + 1.
An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...
For example, a CPU starts an addition operation by routing the operands from their sources (typically processor registers) to the ALU's operand inputs, while simultaneously applying a value to the ALU's opcode input that configures it to perform an addition operation. At the same time, the CPU enables the destination register to store the ALU ...
The carry-select adder generally consists of ripple-carry adders and a multiplexer.Adding two n-bit numbers with a carry-select adder is done with two adders (therefore two ripple-carry adders), in order to perform the calculation twice, one time with the assumption of the carry-in being zero and the other assuming it will be one.
A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.