Search results
Results from the WOW.Com Content Network
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.
In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4.
Download as PDF; Printable version; ... More generally, when the directrix is an ellipse, or any conic section, and the apex ... Toggle the table of contents.
If one looks at the triangles formed by the diameters of the circular sections (both families) and the vertex of the cone (triangles ABC and ADB), they are all similar. That is, if CB and BD are antiparallel with respect to lines AB and AC , then all sections of the cone parallel to either one of these circles will be circles.
Download as PDF; Printable version; ... S is a plane, and A is a conic section on S, the projective cone is a conical surface; ... Toggle the table of contents.
Toggle the table of contents. Focal conics. 2 languages. ... Download QR code; Print/export Download as PDF; Printable version; In other projects
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.