Search results
Results from the WOW.Com Content Network
Java references are pointers to objects. [16] Java references do not allow direct access to memory addresses or allow memory addresses to be manipulated with pointer arithmetic. In C++ one can construct pointers to pointers, pointers to ints and doubles, and pointers to arbitrary memory locations.
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
String representation Object copy Value equality Object comparison Hash code Object ID Human-readable Source-compatible ABAP Objects — APL (Dyalog) ⍕x ⎕SRC x ⎕NS x: x = y — C++ x == y [52] pointer to object can be converted into an integer ID: C# x.ToString() x.Clone() x.Equals(y) x.CompareTo(y) x.GetHashCode()
Where "new" is the standard routine in Pascal for allocating memory for a pointer, and "hex" is presumably a routine to print the hexadecimal string describing the value of an integer. This would allow the display of the address of a pointer, something which is not normally permitted. (Pointers cannot be read or written, only assigned.)
C++ objects in general behave like primitive types, so to copy a C++ object one could use the '=' (assignment) operator. There is a default assignment operator provided for all classes, but its effect may be altered through the use of operator overloading. There are dangers when using this technique (see slicing).
Objects can contain other objects in their instance variables; this is known as object composition. For example, an object in the Employee class might contain (either directly or through a pointer) an object in the Address class, in addition to its own instance variables like "first_name" and "position".
In the Java virtual machine, internal type signatures are used to identify methods and classes at the level of the virtual machine code. Example: The method String String. substring (int, int) is represented in bytecode as Ljava / lang / String. substring (II) Ljava / lang / String;. The signature of the main method looks like this: [2]
The std::string type is the main string datatype in standard C++ since 1998, but it was not always part of C++. From C, C++ inherited the convention of using null-terminated strings that are handled by a pointer to their first element, and a library of functions that manipulate such strings.