enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypergeometric distribution - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_distribution

    In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.

  3. Fisher's noncentral hypergeometric distribution - Wikipedia

    en.wikipedia.org/wiki/Fisher's_noncentral...

    Use Wallenius' noncentral hypergeometric distribution instead if items are sampled one by one with competition. Fisher's noncentral hypergeometric distribution is used mostly for tests in contingency tables where a conditional distribution for fixed margins is desired. This can be useful, for example, for testing or measuring the effect of a ...

  4. Hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_function

    In mathematics, the Gaussian or ordinary hypergeometric function 2 F 1 (a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE).

  5. Basic hypergeometric series - Wikipedia

    en.wikipedia.org/wiki/Basic_hypergeometric_series

    In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x n is called hypergeometric if the ratio of successive terms x n+1 /x n is a rational function of n.

  6. Negative hypergeometric distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_hypergeometric...

    Negative-hypergeometric distribution (like the hypergeometric distribution) deals with draws without replacement, so that the probability of success is different in each draw. In contrast, negative-binomial distribution (like the binomial distribution) deals with draws with replacement , so that the probability of success is the same and the ...

  7. Generalized hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Generalized_hypergeometric...

    Plot of the generalized hypergeometric function pFq(a b z) with a=(2,4,6,8) and b=(2,3,5,7,11) in the complex plane from -2-2i to 2+2i created with Mathematica 13.1 function ComplexPlot3D. In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n.

  8. Hypergeometric function of a matrix argument - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_function_of...

    In mathematics, the hypergeometric function of a matrix argument is a generalization of the classical hypergeometric series. It is a function defined by an infinite summation which can be used to evaluate certain multivariate integrals. Hypergeometric functions of a matrix argument have applications in random matrix theory. For example, the ...

  9. Meijer G-function - Wikipedia

    en.wikipedia.org/wiki/Meijer_G-function

    The first definition was made by Meijer using a series; nowadays the accepted and more general definition is via a line integral in the complex plane, introduced in its full generality by Arthur Erdélyi in 1953. With the modern definition, the majority of the established special functions can be represented in terms of the Meijer G-function.