Search results
Results from the WOW.Com Content Network
Almost every origami book has basic instructions and a set of folding symbols. The following are books that happen to have detailed explanations of these techniques, and how the techniques are related to each other: David Lister (29 February 2024). "The Origin of Origami Symbols". British Origami Society. Robert J. Lang (1988).
The Huzita–Justin axioms or Huzita–Hatori axioms are a set of rules related to the mathematical principles of origami, describing the operations that can be made when folding a piece of paper. The axioms assume that the operations are completed on a plane (i.e. a perfect piece of paper), and that all folds are linear.
The placement of a point on a curved fold in the pattern may require the solution of elliptic integrals. Curved origami allows the paper to form developable surfaces that are not flat. [41] Wet-folding origami is a technique evolved by Yoshizawa that allows curved folds to create an even greater range of shapes of higher order complexity.
Origami folders often use the Japanese word kirigami to refer to designs which use cuts. In the detailed Japanese classification, origami is divided into stylized ceremonial origami (儀礼折り紙, girei origami) and recreational origami (遊戯折り紙, yūgi origami), and only recreational origami is generally recognized as origami.
A paper fortune teller may be constructed by the steps shown in the illustration below: [1] [2] The corners of a sheet of paper are folded up to meet the opposite sides and (if the paper is not already square) the top is cut off, making a square sheet with diagonal creases.
Geometric Origami is a book on the mathematics of paper folding, focusing on the ability to simulate and extend classical straightedge and compass constructions using origami. It was written by Austrian mathematician Robert Geretschläger [ de ] and published by Arbelos Publishing (Shipley, UK) in 2008.
Modular origami or unit origami is a multi-stage paper folding technique in which several, or sometimes many, sheets of paper are first folded into individual modules or units and then assembled into an integrated flat shape or three-dimensional structure, usually by inserting flaps into pockets created by the folding process. [3]
The solver is given a grid and a list of words. To solve the puzzle correctly, the solver must find a solution that fits all of the available words into the grid.