enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. L'Hôpital's rule - Wikipedia

    en.wikipedia.org/wiki/L'Hôpital's_rule

    Other indeterminate forms, such as 1 ∞, 0 0, ∞ 0, 0 · ∞, and ∞ − ∞, can sometimes be evaluated using L'Hôpital's rule. We again indicate applications of L'Hopital's rule by = . For example, to evaluate a limit involving ∞ − ∞, convert the difference of two functions to a quotient:

  3. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function.

  4. Stolz–Cesàro theorem - Wikipedia

    en.wikipedia.org/wiki/Stolz–Cesàro_theorem

    It is named after mathematicians Otto Stolz and Ernesto Cesàro, who stated and proved it for the first time. The Stolz–Cesàro theorem can be viewed as a generalization of the Cesàro mean , but also as a l'Hôpital's rule for sequences.

  5. Guillaume de l'Hôpital - Wikipedia

    en.wikipedia.org/wiki/Guillaume_de_l'Hôpital

    His name is firmly associated with l'Hôpital's rule for calculating limits involving indeterminate forms 0/0 and ∞/∞. Although the rule did not originate with l'Hôpital, it appeared in print for the first time in his 1696 treatise on the infinitesimal calculus, entitled Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes. [3]

  6. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.

  7. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]

  8. Division by infinity - Wikipedia

    en.wikipedia.org/wiki/Division_by_infinity

    The hyperbola = /.As approaches ∞, approaches 0.. In mathematics, division by infinity is division where the divisor (denominator) is ∞.In ordinary arithmetic, this does not have a well-defined meaning, since ∞ is a mathematical concept that does not correspond to a specific number, and moreover, there is no nonzero real number that, when added to itself an infinite number of times ...

  9. Mean value theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_value_theorem

    If finite, that limit equals ′ (). An example where this version of the theorem applies is given by the real-valued cube root function mapping x ↦ x 1 / 3 {\displaystyle x\mapsto x^{1/3}} , whose derivative tends to infinity at the origin.