enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological group - Wikipedia

    en.wikipedia.org/wiki/Topological_group

    The real numbers form a topological group under addition. In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

  3. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...

  4. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    Homotopy groups are such a way of associating groups to topological spaces. A torus A sphere. That link between topology and groups lets mathematicians apply insights from group theory to topology. For example, if two topological objects have different homotopy groups, they cannot have the same topological structure—a fact that may be ...

  5. Category:Topological groups - Wikipedia

    en.wikipedia.org/wiki/Category:Topological_groups

    In mathematics, a topological group G is a group that is also a topological space such that the group multiplication G × G→G and the inverse operation G→G are continuous maps. Subcategories This category has the following 2 subcategories, out of 2 total.

  6. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    A set with a topology is called a topological space. Metric spaces are an important class of topological spaces where a real, non-negative distance, also called a metric, can be defined on pairs of points in the set. Having a metric simplifies many proofs, and many of the most common topological spaces are metric spaces.

  7. Balanced group - Wikipedia

    en.wikipedia.org/wiki/Balanced_group

    The completion of a balanced group with respect to its uniform structure admits a unique topological group structure extending that of .This generalizes the case of abelian groups and is a special case of the two-sided completion of an arbitrary topological group, which is with respect to the coarsest uniform structure finer than both the left and the right uniform structures.

  8. Fundamental group - Wikipedia

    en.wikipedia.org/wiki/Fundamental_group

    This set (with the group structure described below) is called the fundamental group of the topological space X at the base point . The purpose of considering the equivalence classes of loops up to homotopy, as opposed to the set of all loops (the so-called loop space of X ) is that the latter, while being useful for various purposes, is a ...

  9. Topological geometry - Wikipedia

    en.wikipedia.org/wiki/Topological_Geometry

    As in the case of topological groups, many deeper results require the point space to be (locally) compact and connected. This generalizes the observation that the line joining two distinct points in the Euclidean plane depends continuously on the pair of points and the intersection point of two lines is a continuous function of these lines.