Search results
Results from the WOW.Com Content Network
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.
A logical formula is considered to be in DNF if it is a disjunction of one or more conjunctions of one or more literals. [2] [3] [4] A DNF formula is in full disjunctive normal form if each of its variables appears exactly once in every conjunction and each conjunction appears at most once (up to the order of variables).
Another form of argument is known as modus tollens (commonly abbreviated MT). In this form, you start with the same first premise as with modus ponens. However, the second part of the premise is denied, leading to the conclusion that the first part of the premise should be denied as well.
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
In propositional logic and Boolean algebra, there is a duality between conjunction and disjunction, [1] [2] [3] also called the duality principle. [4] [5] [6] It is the most widely known example of duality in logic. [1]
disjunct A and B are disjoined Negation It is not the case that A negatum/negand A is negated Conditional If A, then B antecedent, consequent B is implied by A Biconditional A if, and only if, B equivalents A and B are equivalent
The rule makes it possible to shorten longer proofs by deriving one of the conjuncts of a conjunction on a line by itself. An example in English: It's raining and it's pouring. Therefore it's raining. The rule consists of two separate sub-rules, which can be expressed in formal language as: and
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...