enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjunctive normal form - Wikipedia

    en.wikipedia.org/wiki/Conjunctive_normal_form

    In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.

  3. Disjunctive normal form - Wikipedia

    en.wikipedia.org/wiki/Disjunctive_normal_form

    A logical formula is considered to be in DNF if it is a disjunction of one or more conjunctions of one or more literals. [2] [3] [4] A DNF formula is in full disjunctive normal form if each of its variables appears exactly once in every conjunction and each conjunction appears at most once (up to the order of variables).

  4. List of valid argument forms - Wikipedia

    en.wikipedia.org/wiki/List_of_valid_argument_forms

    Another form of argument is known as modus tollens (commonly abbreviated MT). In this form, you start with the same first premise as with modus ponens. However, the second part of the premise is denied, leading to the conclusion that the first part of the premise should be denied as well.

  5. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  6. Conjunction/disjunction duality - Wikipedia

    en.wikipedia.org/wiki/Conjunction/disjunction...

    In propositional logic and Boolean algebra, there is a duality between conjunction and disjunction, [1] [2] [3] also called the duality principle. [4] [5] [6] It is the most widely known example of duality in logic. [1]

  7. Logical connective - Wikipedia

    en.wikipedia.org/wiki/Logical_connective

    disjunct A and B are disjoined Negation It is not the case that A negatum/negand A is negated Conditional If A, then B antecedent, consequent B is implied by A Biconditional A if, and only if, B equivalents A and B are equivalent

  8. Conjunction elimination - Wikipedia

    en.wikipedia.org/wiki/Conjunction_elimination

    The rule makes it possible to shorten longer proofs by deriving one of the conjuncts of a conjunction on a line by itself. An example in English: It's raining and it's pouring. Therefore it's raining. The rule consists of two separate sub-rules, which can be expressed in formal language as: and

  9. Material implication (rule of inference) - Wikipedia

    en.wikipedia.org/wiki/Material_implication_(rule...

    In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...