Search results
Results from the WOW.Com Content Network
Equivalently, the connectivity of a graph is the greatest integer k for which the graph is k-connected. While terminology varies, noun forms of connectedness-related properties often include the term connectivity. Thus, when discussing simply connected topological spaces, it is far more common to speak of simple connectivity than simple ...
A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...
To wit, there is a category of connective spaces consisting of sets with collections of connected subsets satisfying connectivity axioms; their morphisms are those functions which map connected sets to connected sets (Muscat & Buhagiar 2006). Topological spaces and graphs are special cases of connective spaces; indeed, the finite connective ...
A graph with connectivity 4. In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected.
Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space.
The collection of strongly connected components forms a partition of the set of vertices of G. A strongly connected component C is called trivial when C consists of a single vertex which is not connected to itself with an edge, and non-trivial otherwise. [1] The yellow directed acyclic graph is the condensation of the blue directed graph. It is ...
Niel Ritchie is the executive director of the League of Rural Voters. This article originally appeared on Des Moines Register: Net neutrality vs. rural connectivity: FCC making wrong choice
In this view, embeddings of graphs into a surface or as subdivisions of other graphs are both instances of topological embedding, homeomorphism of graphs is just the specialization of topological homeomorphism, the notion of a connected graph coincides with topological connectedness, and a connected graph is a tree if and only if its ...