enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Connectedness - Wikipedia

    en.wikipedia.org/wiki/Connectedness

    Equivalently, the connectivity of a graph is the greatest integer k for which the graph is k-connected. While terminology varies, noun forms of connectedness-related properties often include the term connectivity. Thus, when discussing simply connected topological spaces, it is far more common to speak of simple connectivity than simple ...

  3. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...

  4. Connected space - Wikipedia

    en.wikipedia.org/wiki/Connected_space

    To wit, there is a category of connective spaces consisting of sets with collections of connected subsets satisfying connectivity axioms; their morphisms are those functions which map connected sets to connected sets (Muscat & Buhagiar 2006). Topological spaces and graphs are special cases of connective spaces; indeed, the finite connective ...

  5. k-vertex-connected graph - Wikipedia

    en.wikipedia.org/wiki/K-vertex-connected_graph

    A graph with connectivity 4. In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected.

  6. Locally connected space - Wikipedia

    en.wikipedia.org/wiki/Locally_connected_space

    Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space.

  7. Strongly connected component - Wikipedia

    en.wikipedia.org/wiki/Strongly_connected_component

    The collection of strongly connected components forms a partition of the set of vertices of G. A strongly connected component C is called trivial when C consists of a single vertex which is not connected to itself with an edge, and non-trivial otherwise. [1] The yellow directed acyclic graph is the condensation of the blue directed graph. It is ...

  8. Niel Ritchie is the executive director of the League of Rural Voters. This article originally appeared on Des Moines Register: Net neutrality vs. rural connectivity: FCC making wrong choice

  9. Topological graph theory - Wikipedia

    en.wikipedia.org/wiki/Topological_graph_theory

    In this view, embeddings of graphs into a surface or as subdivisions of other graphs are both instances of topological embedding, homeomorphism of graphs is just the specialization of topological homeomorphism, the notion of a connected graph coincides with topological connectedness, and a connected graph is a tree if and only if its ...