Search results
Results from the WOW.Com Content Network
The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide called a Wittig reagent. Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. [1] [2] [3] Most often, the Wittig reaction is used to introduce a methylene group using ...
The [2,3]-Wittig rearrangement is the transformation of an allylic ether into a homoallylic alcohol via a concerted, pericyclic process. Because the reaction is concerted, it exhibits a high degree of stereocontrol, and can be employed early in a synthetic route to establish stereochemistry.
Because phosphonium ylides are seldom isolated, the byproduct(s) generated upon deprotonation essentially plays the role of an additive in a Wittig reaction. As a result, the choice of base has a strong influence on the efficiency and, when applicable, the stereochemical outcome of the Wittig reaction.
A 1,2-Wittig rearrangement is a categorization of chemical reactions in organic chemistry, and consists of a 1,2-rearrangement of an ether with an alkyllithium compound. [1] The reaction is named for Nobel Prize winning chemist Georg Wittig. [2] [3] The intermediate is an alkoxy lithium salt, and the final product an alcohol.
Two examples of the Wittig reaction using methylenetriphenylphosphorane. Methylenetriphenylphosphorane has become a standard tool for synthetic organic chemists. [6]
Stereoconvergence can be considered an opposite of stereospecificity, when the reaction of two different stereoisomers yield a single product stereoisomer. The quality of stereoselectivity is concerned solely with the products, and their stereochemistry. Of a number of possible stereoisomeric products, the reaction selects one or two to be formed.
If Y is nitrogen, the reaction is referred to as the Sommelet–Hauser rearrangement if a quaternary ammonium salt is involved or the aza-Wittig reaction if an alpha-metalated tertiary amine is involved; if Y is oxygen, then it is called a 2,3-Wittig rearrangement (not to be confused with the well-known Wittig reaction, which involves a ...
Thermolysis converts 1 to (E,E) geometric isomer 2, but 3 to (E,Z) isomer 4.. The Woodward–Hoffmann rules (or the pericyclic selection rules) [1] are a set of rules devised by Robert Burns Woodward and Roald Hoffmann to rationalize or predict certain aspects of the stereochemistry and activation energy of pericyclic reactions, an important class of reactions in organic chemistry.