Search results
Results from the WOW.Com Content Network
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
Asymptotic normality, in mathematics and statistics; Complete normality or normal space, Log-normality, in probability theory; Normality (category theory) Normality (statistics) or normal distribution, in probability theory; Normality tests, used to determine if a data set is well-modeled by a normal distribution
A graphical tool for assessing normality is the normal probability plot, a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution. Here the correlation between the sample data and normal quantiles (a measure of the goodness of fit) measures how well the data are modeled by a normal distribution.
The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).
Conversely, if is a normal deviate with parameters and , then this distribution can be re-scaled and shifted via the formula = / to convert it to the standard normal distribution. This variate is also called the standardized form of X {\textstyle X} .
Student's t-test assumes that the sample means being compared for two populations are normally distributed, and that the populations have equal variances.Welch's t-test is designed for unequal population variances, but the assumption of normality is maintained. [1]
It is possible to give a fairly long list of equivalent definitions of a normal matrix. Let A be a n × n complex matrix. Then the following are equivalent: A is normal. A is diagonalizable by a unitary matrix. There exists a set of eigenvectors of A which forms an orthonormal basis for C n.
The null hypothesis of this chi-squared test is homoscedasticity, and the alternative hypothesis would indicate heteroscedasticity. Since the Breusch–Pagan test is sensitive to departures from normality or small sample sizes, the Koenker–Bassett or 'generalized Breusch–Pagan' test is commonly used instead.