Search results
Results from the WOW.Com Content Network
The gas flow rate is constant (i.e., steady) during the period of the propellant burn. The gas flow is non-turbulent and axisymmetric from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry). The flow is compressible as the fluid is a gas. As the combustion gas enters the rocket nozzle, it is traveling at subsonic velocities.
Grossly overexpanded nozzles have improved efficiency, but the exhaust jet is unstable. Conventional nozzles become progressively more underexpanded as they gain altitude. [1] The basic concept of any engine bell is to efficiently direct the flow of exhaust gases from the rocket engine into one direction.
A supersonic flow that is turned while there is an increase in flow area is also isentropic. Since there is an increase in area, therefore we call this an isentropic expansion. If a supersonic flow is turned abruptly and the flow area decreases, the flow is irreversible due to the generation of shock waves.
Choked flow is a limiting condition where the mass flow cannot increase with a further decrease in the downstream pressure environment for a fixed upstream pressure and temperature. For homogeneous fluids, the physical point at which the choking occurs for adiabatic conditions is when the exit plane velocity is at sonic conditions; i.e., at a ...
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
Diagram of a de Laval nozzle, showing approximate flow velocity (v), together with the effect on temperature (T) and pressure (p) A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.