Search results
Results from the WOW.Com Content Network
where i is the index of summation; a i is an indexed variable representing each term of the sum; m is the lower bound of summation, and n is the upper bound of summation. The "i = m" under the summation symbol means that the index i starts out equal to m. The index, i, is incremented by one for each successive term, stopping when i = n. [b]
However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and maximum , but are more useful in analysis because they better characterize special sets which may have no minimum or maximum .
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
The summation is called a periodic summation of the function . When g T {\displaystyle g_{T}} is a periodic summation of another function, g {\displaystyle g} , then f ∗ g T {\displaystyle f*g_{T}} is known as a circular or cyclic convolution of f {\displaystyle f} and g {\displaystyle g} .
One can also speak of "almost all" integers having a property to mean "all except finitely many", despite the integers not admitting a measure for which this agrees with the previous usage. For example, "almost all prime numbers are odd". There is a more complicated meaning for integers as well, discussed in the main article.
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence ().As a consequence the partial sums of the series only consists of two terms of () after cancellation.