enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Myelin - Wikipedia

    en.wikipedia.org/wiki/Myelin

    The main purpose of myelin is to increase the speed at which electrical impulses (known as action potentials) propagate along the myelinated fiber. In unmyelinated fibers, action potentials travel as continuous waves, but, in myelinated fibers, they "hop" or propagate by saltatory conduction. The latter is markedly faster than the former, at ...

  3. Node of Ranvier - Wikipedia

    en.wikipedia.org/wiki/Node_of_Ranvier

    Since an axon can be unmyelinated or myelinated, the action potential has two methods to travel down the axon. These methods are referred to as continuous conduction for unmyelinated axons, and saltatory conduction for myelinated axons. Saltatory conduction is defined as an action potential moving in discrete jumps down a myelinated axon.

  4. Saltatory conduction - Wikipedia

    en.wikipedia.org/wiki/Saltatory_conduction

    Myelinated axons only allow action potentials to occur at the unmyelinated nodes of Ranvier that occur between the myelinated internodes. It is by this restriction that saltatory conduction propagates an action potential along the axon of a neuron at rates significantly higher than would be possible in unmyelinated axons (150 m/s compared from 0.5 to 10 m/s). [1]

  5. Myelinogenesis - Wikipedia

    en.wikipedia.org/wiki/Myelinogenesis

    The studies on a rat optic nerve revealed that 15 days post-natal is when an increase in myelination is observed. Before this time period, most of the axons, roughly about 70%, are not myelinated. At this time, [35S] Sulfate was incorporated into sulfatide and the activity of cerebroside, sulfotransferase reached a peak in enzyme activity. This ...

  6. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of excitable cells, which include animal cells like neurons and muscle cells, as well as some plant cells.

  7. File:Propagation of action potential along myelinated nerve ...

    en.wikipedia.org/wiki/File:Propagation_of_action...

    The unmyelinated parts of the nerve fiber are nodes of Ranvier. This way of action potential propagation is called saltatory conduction (red arrows in the diagram) Ion channels open, allow sodium ions to enter the cell leading to membrane depolarization and generation of action potential.

  8. Schwann cell - Wikipedia

    en.wikipedia.org/wiki/Schwann_cell

    Schwann cells are a variety of glial cells that keep peripheral nerve fibres (both myelinated and unmyelinated) alive. In myelinated axons, Schwann cells form the myelin sheath. The sheath is not continuous. Individual myelinating Schwann cells cover about 1 mm of an axon [3] – equating to about 1000 Schwann cells along a 1-m length of the axon.

  9. Axon hillock - Wikipedia

    en.wikipedia.org/wiki/Axon_hillock

    Once this initial action potential is initiated, principally at the axon hillock, it propagates down the length of the axon. Under normal conditions, the action potential would attenuate very quickly due to the porous nature of the cell membrane. To ensure faster and more efficient propagation of action potentials, the axon is myelinated ...