enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron temperature - Wikipedia

    en.wikipedia.org/wiki/Neutron_temperature

    A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10 −21 J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the mode of the Maxwell–Boltzmann distribution for this temperature, E peak = k T.

  3. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...

  4. Formation evaluation neutron porosity - Wikipedia

    en.wikipedia.org/wiki/Formation_evaluation...

    Fast neutrons are emitted by these sources with energy ranges from 4 MeV to 14 MeV, and inelastically interact with matter. Once slowed down to 2 MeV, they start to scatter elastically and slow down further until the neutrons reach a thermal energy level of about 0.025 eV. When thermal neutrons are then absorbed, gamma rays are emitted.

  5. Neutron activation analysis - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation_analysis

    The neutron flux from such a reactor is in the order of 10 12 neutrons cm −2 s −1. [1] The type of neutrons generated are of relatively low kinetic energy (KE), typically less than 0.5 eV. These neutrons are termed thermal neutrons. Upon irradiation, a thermal neutron interacts with the target nucleus via a non-elastic collision, causing ...

  6. Free neutron decay - Wikipedia

    en.wikipedia.org/wiki/Free_neutron_decay

    For the free neutron, the decay energy for this process (based on the rest masses of the neutron, proton and electron) is 0.782 343 MeV. That is the difference between the rest mass of the neutron and the sum of the rest masses of the products. That difference has to be carried away as kinetic energy.

  7. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Therefore, only relative free energy values, or changes in free energy, are physically meaningful. The free energy is the portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i.e., work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [1]

  8. Free-energy perturbation - Wikipedia

    en.wikipedia.org/wiki/Free-energy_perturbation

    Free-energy perturbation (FEP) is a method based on statistical mechanics that is used in computational chemistry for computing free-energy differences from molecular dynamics or Metropolis Monte Carlo simulations. The FEP method was introduced by Robert W. Zwanzig in 1954. [1]

  9. Neutron moderator - Wikipedia

    en.wikipedia.org/wiki/Neutron_moderator

    [2] [3] The characteristic neutron temperature of several-MeV neutrons is several tens of billions kelvin. Moderation is the process of the reduction of the initial high speed (high kinetic energy) of the free neutron. Since energy is conserved, this reduction of the neutron speed takes place by transfer of energy to a material called a moderator.