Search results
Results from the WOW.Com Content Network
The Secure Hash Algorithms are a family of cryptographic hash functions published by the National Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS), including: SHA-0: A retronym applied to the original version of the 160-bit hash function published in 1993 under the name "SHA". It was ...
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
Algorithm BLAKE2b Input: M Message to be hashed cbMessageLen: Number, (0..2 128) Length of the message in bytes Key Optional 0..64 byte key cbKeyLen: Number, (0..64) Length of optional key in bytes cbHashLen: Number, (1..64) Desired hash length in bytes Output: Hash Hash of cbHashLen bytes Initialize State vector h with IV h 0..7 ← IV 0..7 ...
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
A mid-squares hash code is produced by squaring the input and extracting an appropriate number of middle digits or bits. For example, if the input is 123 456 789 and the hash table size 10 000, then squaring the key produces 15 241 578 750 190 521, so the hash code is taken as the middle 4 digits of the 17-digit number (ignoring the high digit ...
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).