Search results
Results from the WOW.Com Content Network
Mask generation functions, as generalizations of hash functions, are useful wherever hash functions are. However, use of a MGF is desirable in cases where a fixed-size hash would be inadequate. Examples include generating padding, producing one-time pads or keystreams in symmetric-key encryption, and yielding outputs for pseudorandom number ...
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
A mid-squares hash code is produced by squaring the input and extracting an appropriate number of middle digits or bits. For example, if the input is 123 456 789 and the hash table size 10 000, then squaring the key produces 15 241 578 750 190 521, so the hash code is taken as the middle 4 digits of the 17-digit number (ignoring the high digit ...
Algorithm BLAKE2b Input: M Message to be hashed cbMessageLen: Number, (0..2 128) Length of the message in bytes Key Optional 0..64 byte key cbKeyLen: Number, (0..64) Length of optional key in bytes cbHashLen: Number, (1..64) Desired hash length in bytes Output: Hash Hash of cbHashLen bytes Initialize State vector h with IV h 0..7 ← IV 0..7 ...
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
One of its authors also described the algorithm in a companion paper in 2010. [ 1 ] NIST SP800-56Cr2 [ 3 ] specifies a parameterizable extract-then-expand scheme, noting that RFC 5869 HKDF is a version of it and citing its paper [ 1 ] for the rationale for the recommendations' extract-and-expand mechanisms.