Search results
Results from the WOW.Com Content Network
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power.
Deductive reasoning plays a central role in formal logic and mathematics. [1] In mathematics, it is used to prove mathematical theorems based on a set of premises, usually called axioms. For example, Peano arithmetic is based on a small set of axioms from which all essential properties of natural numbers can be inferred using deductive reasoning.
However, it can also include attempts to use logic to analyze mathematical reasoning or to establish logic-based foundations of mathematics. [165] The latter was a major concern in early 20th-century mathematical logic, which pursued the program of logicism pioneered by philosopher-logicians such as Gottlob Frege, Alfred North Whitehead, and ...
In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.. What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected ...
Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and, in particular, to have reliable concepts of theorems, proofs, algorithms, etc. This may also include the philosophical study of the relation of this framework with reality. [1]
Logic is used in most intellectual activities, but is studied primarily in the disciplines of philosophy, mathematics, semantics, and computer science. Other mathematical sciences – academic disciplines that are primarily mathematical in nature but may not be universally considered subfields of mathematics proper.
In proof theory and mathematical logic, sequent calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The first sequent calculi systems, LK and LJ, were introduced in 1934/1935 by Gerhard Gentzen [1] as a tool for studying natural deduction in first-order logic (in classical and intuitionistic versions, respectively).
Logical Intuition, or mathematical intuition or rational intuition, is a series of instinctive foresight, know-how, and savviness often associated with the ability to perceive logical or mathematical truth—and the ability to solve mathematical challenges efficiently. [1]