enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce an entire set, but rather trees remain small from the start.

  3. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [34] [35] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...

  4. Pruning (artificial neural network) - Wikipedia

    en.wikipedia.org/wiki/Pruning_(artificial_neural...

    Pruning is the practice of removing parameters (which may entail removing individual parameters, or parameters in groups such as by neurons) from an existing artificial neural networks. [1] The goal of this process is to maintain accuracy of the network while increasing its efficiency .

  5. Grafting (decision trees) - Wikipedia

    en.wikipedia.org/wiki/Grafting_(decision_trees)

    The nodes and leaves can be identified from the given information and the decision trees are constructed. One such decision tree is as follows, Decision Tree branch for the information. Here the X-axis is represented as A and Y-axis as B. There are two cuts in the decision trees – nodes at 11 and 5 respective to A.

  6. Incremental decision tree - Wikipedia

    en.wikipedia.org/wiki/Incremental_decision_tree

    An incremental decision tree algorithm is an online machine learning algorithm that outputs a decision tree. Many decision tree methods, such as C4.5 , construct a tree using a complete dataset. Incremental decision tree methods allow an existing tree to be updated using only new individual data instances, without having to re-process past ...

  7. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...

  8. Logistic model tree - Wikipedia

    en.wikipedia.org/wiki/Logistic_model_tree

    In computer science, a logistic model tree (LMT) is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning. [ 1 ] [ 2 ]

  9. Alpha–beta pruning - Wikipedia

    en.wikipedia.org/wiki/Alpha–beta_pruning

    Alpha–beta pruning is a search algorithm that seeks to decrease the number of nodes that are evaluated by the minimax algorithm in its search tree. It is an adversarial search algorithm used commonly for machine playing of two-player combinatorial games ( Tic-tac-toe , Chess , Connect 4 , etc.).