Ads
related to: lattice grid multiplication practiceteacherspayteachers.com has been visited by 100K+ users in the past month
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Packets
Search results
Results from the WOW.Com Content Network
A grid is drawn up, and each cell is split diagonally. The two multiplicands of the product to be calculated are written along the top and right side of the lattice, respectively, with one digit per column across the top for the first multiplicand (the number written left to right), and one digit per row down the right side for the second multiplicand (the number written top-down).
Lattice, or sieve, multiplication is algorithmically equivalent to long multiplication. It requires the preparation of a lattice (a grid drawn on paper) which guides the calculation and separates all the multiplications from the additions. It was introduced to Europe in 1202 in Fibonacci's Liber Abaci. Fibonacci described the operation as ...
The grid method (also known as the box method) of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school , this algorithm is sometimes called the grammar school method.
Napier's bones is a manually operated calculating device created by John Napier of Merchiston, Scotland for the calculation of products and quotients of numbers. The method was based on lattice multiplication, and also called rabdology, a word invented by Napier.
Other techniques used for multiplication are the grid method and the lattice method. [70] Computer science is interested in multiplication algorithms with a low computational complexity to be able to efficiently multiply very large integers, such as the Karatsuba algorithm, the Schönhage–Strassen algorithm, and the Toom–Cook algorithm. [71]
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
Ads
related to: lattice grid multiplication practiceteacherspayteachers.com has been visited by 100K+ users in the past month