Search results
Results from the WOW.Com Content Network
Martensite has a lower density than austenite, so that the martensitic transformation results in a relative change of volume. [4] Of considerably greater importance than the volume change is the shear strain, which has a magnitude of about 0.26 and which determines the shape of the plates of martensite. [5]
Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. [1] In plain-carbon steel , austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures.
Austempering is heat treatment that is applied to ferrous metals, most notably steel and ductile iron. In steel it produces a bainite microstructure whereas in cast irons it produces a structure of acicular ferrite and high carbon, stabilized austenite known as ausferrite. It is primarily used to improve mechanical properties or reduce ...
This change in macroscopic behavior of the material can be linked to the evolution of microstructure from dimple to quasi-cleavage fracture morphology. [13] Aging followed by solution treatment of selective laser melted steels also reduces the amount of retained austenite in the martensitic matrix and lead to change in the grain orientation. [14]
The metal part is then removed from the bath and cooled in air to room temperature to permit the austenite to transform to martensite. Martempering is a method by which the stresses and strains generated during the quenching of a steel component can be controlled. In martempering, steel is heated to above the critical range to make it all ...
Martensitic stainless steels can be high- or low-carbon steels built around the composition of iron, 12% up to 17% chromium, carbon from 0.10% (Type 410) up to 1.2% (Type 440C): [9] Up to about 0.4%C they are used mostly for their mechanical properties in applications such as pumps, valves, and shafts.
Austenitic stainless steel is one of the five classes of stainless steel as defined by crystalline structure (along with ferritic, martensitic, duplex and precipitation hardened). [1] Its primary crystalline structure is austenite (face-centered cubic). Such steels are not hardenable by heat treatment and are essentially non-magnetic. [2]
Tempering reduces the hardness in the steel by gradually changing the martensite into a microstructure of various carbides, such as cementite, and softer ferrite (iron), forming a microstructure called "tempered martensite". When tempering high-carbon steel in the blacksmith method, the color provides a general indication of the final hardness ...