Search results
Results from the WOW.Com Content Network
Cosmic background radiation is electromagnetic radiation that fills all space. The origin of this radiation depends on the region of the spectrum that is observed. One component is the cosmic microwave background .
The anisotropy, or directional dependency, of the cosmic microwave background is divided into two types: primary anisotropy, due to effects that occur at the surface of last scattering and before; and secondary anisotropy, due to effects such as interactions of the background radiation with intervening hot gas or gravitational potentials, which ...
The radiation of outer space has a different temperature than the kinetic temperature of the gas, meaning that the gas and radiation are not in thermodynamic equilibrium. [39] [40] All of the observable universe is filled with photons that were created during the Big Bang, which is known as the cosmic microwave background radiation (CMB).
Also cosmic microwave background radiation (CMBR). cosmic ray A type of radiation consisting of high-energy protons and atomic nuclei which move through space at nearly the speed of light, and which may originate from the Sun or from outside the Solar System. Collisions of cosmic rays with the Earth's atmosphere can produce dramatic effects ...
The cosmic microwave background is radiation left over from decoupling after the epoch of recombination when neutral atoms first formed. At this point, radiation produced in the Big Bang stopped Thomson scattering from charged ions. The radiation, first observed in 1965 by Arno Penzias and Robert Woodrow Wilson, has a perfect thermal black-body ...
The magnitude of the energy of cosmic ray flux in interstellar space is very comparable to that of other deep space energies: cosmic ray energy density averages about one electron-volt per cubic centimetre of interstellar space, or ≈1 eV/cm 3, which is comparable to the energy density of visible starlight at 0.3 eV/cm 3, the galactic magnetic ...
Displayed background gamma radiation level is 9.8 μR/h (0.82 mSv/a) This is very close to the world average background radiation of 0.87 mSv/a from cosmic and terrestrial sources. Cloud chambers used by early researchers first detected cosmic rays and other background radiation. They can be used to visualize the background radiation
By measuring cosmic rays, scientists discovered the presence of magnetic fields and radiation in the Solar System. Some cosmic rays originate from beyond the Solar System or galaxy , allowing scientists to estimate the amount and composition of matter in the universe , providing crucial information about its makeup.