enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cosmic background radiation - Wikipedia

    en.wikipedia.org/wiki/Cosmic_background_radiation

    Its discovery and detailed observations of its properties are considered one of the major confirmations of the Big Bang. The discovery (by chance in 1965) of the cosmic background radiation suggests that the early universe was dominated by a radiation field, a field of extremely high temperature and pressure. [1]

  3. Cosmic microwave background - Wikipedia

    en.wikipedia.org/wiki/Cosmic_microwave_background

    The intensity of the radiation corresponds to black-body radiation at 2.726 K because red-shifted black-body radiation is just like black-body radiation at a lower temperature. According to the Big Bang model, the radiation from the sky we measure today comes from a spherical surface called the surface of last scattering.

  4. Discovery of cosmic microwave background radiation - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_cosmic...

    The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology.In 1964, US physicist Arno Allan Penzias and radio-astronomer Robert Woodrow Wilson discovered the cosmic microwave background (CMB), estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna.

  5. We Just Mapped Out Dark Matter With Radiation From the Big Bang

    www.aol.com/lifestyle/just-mapped-dark-matter...

    Using radiation left over from the Big Bang, researchers mapped the gravitational effects of the mysterious substance known as dark matter.

  6. Cosmic Background Explorer - Wikipedia

    en.wikipedia.org/wiki/Cosmic_Background_Explorer

    The cosmic microwave background radiation is a remnant of the Big Bang and the fluctuations are the imprint of density contrast in the early universe. The density ripples are believed to have produced structure formation as observed in the universe today: clusters of galaxies and vast regions devoid of galaxies.

  7. Cosmic neutrino background - Wikipedia

    en.wikipedia.org/wiki/Cosmic_neutrino_background

    The cosmic neutrino background (CNB or C ν B [a]) is the universe's background particle radiation composed of neutrinos.They are sometimes known as relic neutrinos.. The C ν B is a relic of the Big Bang; while the cosmic microwave background radiation (CMB) dates from when the universe was 379,000 years old, the C ν B decoupled (separated) from matter when the universe was just one second old.

  8. Big Bang - Wikipedia

    en.wikipedia.org/wiki/Big_Bang

    The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. [1] ... This relic radiation, which ...

  9. Outer space - Wikipedia

    en.wikipedia.org/wiki/Outer_space

    The radiation of outer space has a different temperature than the kinetic temperature of the gas, meaning that the gas and radiation are not in thermodynamic equilibrium. [39] [40] All of the observable universe is filled with photons that were created during the Big Bang, which is known as the cosmic microwave background radiation (CMB).