Search results
Results from the WOW.Com Content Network
The vector Laplace operator, also denoted by , is a differential operator defined over a vector field. [7] The vector Laplacian is similar to the scalar Laplacian; whereas the scalar Laplacian applies to a scalar field and returns a scalar quantity, the vector Laplacian applies to a vector field , returning a vector quantity.
The Laplacian vector field theory is being used in research in mathematics and medicine. Math researchers study the boundary values for Laplacian vector fields and investigate an innovative approach where they assume the surface is fractal and then must utilize methods for calculating a well-defined integration over the boundary. [ 5 ]
Or, for different anisotropic effects using the same vector field [14] θ = arctan ( V y / − V x ) {\displaystyle \theta =\arctan(V_{y}/-V_{x})} It is important to note that, regardless of the values of θ {\displaystyle \theta } , the anisotropic propagation will occur parallel to the secondary direction c2 and perpendicular to the ...
For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().
The connection Laplacian, also known as the rough Laplacian, is a differential operator acting on the various tensor bundles of a manifold, defined in terms of a Riemannian- or pseudo-Riemannian metric. When applied to functions (i.e. tensors of rank 0), the connection Laplacian is often called the Laplace–Beltrami operator.
A vector operator is a differential operator used in vector calculus. Vector operators include: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field. Curl is a vector operator that operates on a vector field, producing a ...
Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method. The Laplacian matrix relates to many useful properties of a graph.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.