enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hinge theorem - Wikipedia

    en.wikipedia.org/wiki/Hinge_theorem

    In geometry, the hinge theorem (sometimes called the open mouth theorem) states that if two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first triangle is longer than the third side of the second triangle. [1 ...

  3. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  4. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...

  5. Surreal number - Wikipedia

    en.wikipedia.org/wiki/Surreal_number

    A visualization of the surreal number tree. In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number.

  6. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Georg Cantor published this proof in 1891, [1] [2]: 20– [3] but it was not his first proof of the uncountability of the real numbers, which appeared in 1874. [ 4 ] [ 5 ] However, it demonstrates a general technique that has since been used in a wide range of proofs, [ 6 ] including the first of Gödel's incompleteness theorems [ 2 ] and ...

  7. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    For instance 1 ⁄ 5 can be generated with three folds; first halve a side, then use Haga's theorem twice to produce first 23 and then 1 ⁄ 5. The accompanying diagram shows Haga's first theorem: = +. The function changing the length AP to QC is self inverse.

  8. Lune of Hippocrates - Wikipedia

    en.wikipedia.org/wiki/Lune_of_Hippocrates

    The lune of Hippocrates is the upper left shaded area. It has the same area as the lower right shaded triangle. In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune bounded by arcs of two circles, the smaller of which has as its diameter a chord spanning a right angle on the larger circle.

  9. Transfinite number - Wikipedia

    en.wikipedia.org/wiki/Transfinite_number

    Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").

  1. Related searches hinge theorem and its converse worksheets 1 3 8 bigger than 1 1 2 2 nrsv

    hinge theorem conversehinge theorem wikipedia
    geometry hinge theoremopen mouth hinge theorem