Search results
Results from the WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
2) to make 2 molecules of water (H 2 O)" can also be stated as "1 mole of O 2 will react with 2 moles of H 2 to form 2 moles of water". The same chemical fact, expressed in terms of masses, would be "32 g (1 mole) of oxygen will react with approximately 4.0304 g (2 moles of H
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa
One way to write the van der Waals equation is: [8] [9] [10] = where is pressure, is temperature, and = / is molar volume. In addition is the Avogadro constant, is the volume, and is the number of molecules (the ratio / is a physical quantity with base unit mole (symbol mol) in the SI).
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
Chemical engineers once used the kilogram-mole (notation kg-mol), which is defined as the number of entities in 12 kg of 12 C, and often referred to the mole as the gram-mole (notation g-mol), then defined as the number of entities in 12 g of 12 C, when dealing with laboratory data. [6]
H 2: 0 Water: Gas H 2 O −241.818 Water: Liquid H 2 O −285.8 Hydrogen ion: Aqueous H + 0 Hydroxide ion: Aqueous OH −: −230 Hydrogen peroxide: Liquid H 2 O 2: −187.8 Phosphoric acid: Liquid H 3 PO 4: −1288 Hydrogen cyanide: Gas HCN 130.5 Hydrogen bromide: Liquid HBr −36.3 Hydrogen chloride: Gas HCl −92.30 Hydrogen chloride ...
For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant. The law is named after Amedeo Avogadro who, in 1812, [ 2 ] [ 3 ] hypothesized that two given samples of an ideal gas, of the same volume and at the same temperature and pressure, contain the same ...