Search results
Results from the WOW.Com Content Network
A Wheatstone bridge is an electrical circuit used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. The primary benefit of the circuit is its ability to provide extremely accurate measurements (in contrast with something like a simple voltage divider ). [ 1 ]
The best-known bridge circuit, the Wheatstone bridge, was invented by Samuel Hunter Christie and popularized by Charles Wheatstone, and is used for measuring resistance. It is constructed from four resistors, two of known values R 1 and R 3 (see diagram), one whose resistance is to be determined R x, and one which is variable and calibrated R 2.
A typical post office box is in a wooden box with a hinged lid and a metal or bakelite panel showing circuit connections. Coils of wire are wound non-inductively, mounted in the body of the box, and have a negligible temperature coefficient. Pairs of ratio arms are each 5 10 20 ohms. Resistance arms contains a number of coils from 1 to 5000 ...
A Wheatstone Bridge Circuit for Measuring Resistance: Date: 22 May 2006: Source: Own Work, based on a standard circuit diagram: Author: jjbeard: Permission (Reusing ...
This circuit diagram uses embedded text that can be easily translated using a text editor. Licensing I, the copyright holder of this work, hereby publish it under the following licenses:
Bridge topology is rendered in circuit diagrams in several ways. The first rendering in figure 1.8 is the traditional depiction of a bridge circuit. The second rendering clearly shows the equivalence between the bridge topology and a topology derived by series and parallel combinations. The third rendering is more commonly known as lattice ...
A standard Wheatstone bridge for comparison. Points A, B, C and D in both circuit diagrams correspond. X and Y correspond to R 1 and R 2, P and Q correspond to R 3 and R X. Note that with the Carey Foster bridge, we are measuring R 1 rather than R X. Let ℓ 1 be the null point D on the bridge wire EF in percent.
The suggested setting for the configuration shown, is with R1 = R2, and R3 around the middle of the range of the RTD. Looking at the Wheatstone bridge circuit shown, the voltage drop on the lower left hand side is V_rtd + V_lead, and on the lower righthand side is V_R3 + V_lead, therefore the bridge voltage (V_b) is the difference, V_rtd − V ...