enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    This equation does not correctly describe the motion of variable-mass objects. The correct equation is = (), where u is the velocity of the ejected/accreted mass as seen in the object's rest frame. [17]

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The concepts invoked in Newton's laws of motion — mass, velocity, momentum, force — have predecessors in earlier work, and the content of Newtonian physics was further developed after Newton's time. Newton combined knowledge of celestial motions with the study of events on Earth and showed that one theory of mechanics could encompass both.

  4. Variable-mass system - Wikipedia

    en.wikipedia.org/wiki/Variable-mass_system

    At instant 1, a mass dm with velocity u is about to collide with the main body of mass m and velocity v. After a time dt, at instant 2, both particles move as one body with velocity v + dv. The following derivation is for a body that is gaining mass . A body of time-varying mass m moves at a velocity v at an initial time t.

  5. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    When the relative velocity is zero, is simply equal to 1, and the relativistic mass is reduced to the rest mass as one can see in the next two equations below. As the velocity increases toward the speed of light c, the denominator of the right side approaches zero, and consequently approaches infinity.

  6. Mass in general relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_general_relativity

    The Bondi mass was introduced (Bondi, 1962) in a paper that studied the loss of mass of physical systems via gravitational radiation. The Bondi mass is also associated with a group of asymptotic symmetries, the BMS group at null infinity. Like the SPI group at spatial infinity, the BMS group at null infinity is infinite-dimensional, and it also ...

  7. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    In classical mechanics, the kinetic energy of a point object (an object so small that its mass can be assumed to exist at one point), or a non-rotating rigid body depends on the mass of the body as well as its speed. The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form:

  8. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Settling velocity W s of a sand grain (diameter d, density 2650 kg/m 3) in water at 20 °C, computed with the formula of Soulsby (1997). When the buoyancy effects are taken into account, an object falling through a fluid under its own weight can reach a terminal velocity (settling velocity) if the net force acting on the object becomes zero.

  9. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).