enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic orthogonality - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_orthogonality

    Then whichever hyperbola (A) or (B) is used, the operation is an example of a hyperbolic involution where the asymptote is invariant. Hyperbolically orthogonal lines lie in different sectors of the plane, determined by the asymptotes of the hyperbola, thus the relation of hyperbolic orthogonality is a heterogeneous relation on sets of lines in ...

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u. The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Conversely, the circle B is the envelope of polars of points on the hyperbola, and the locus of poles of tangent lines to the hyperbola. Two tangent lines to B have no (finite) poles because they pass through the center C of the reciprocation circle C; the polars of the corresponding tangent points on B are the

  5. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    A parabola, being tangent to the line at infinity, would have its center being a point on the line at infinity. Hyperbolas intersect the line at infinity in two distinct points and the polar lines of these points are the asymptotes of the hyperbola and are the tangent lines to the hyperbola at these points of infinity.

  6. Orthoptic (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orthoptic_(geometry)

    Examples: The orthoptic of a parabola is its directrix (proof: see below),; The orthoptic of an ellipse + = is the director circle + = + (see below),; The orthoptic of a hyperbola =, > is the director circle + = (in case of a ≤ b there are no orthogonal tangents, see below),

  7. Feuerbach hyperbola - Wikipedia

    en.wikipedia.org/wiki/Feuerbach_hyperbola

    Feuerbach Hyperbola. In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle. [1]

  8. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    The center of all rectangular hyperbolas that pass through the vertices of a triangle lies on its nine-point circle. Examples include the well-known rectangular hyperbolas of Keipert, Jeřábek and Feuerbach. This fact is known as the Feuerbach conic theorem. The nine point circle and the 16 tangent circles of the orthocentric system

  9. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    and defining a unit hyperbola as = with its corresponding parameterized solution set = ⁡ and = ⁡, and by letting < (the hyperbolic angle), we arrive at the result of =. Just as the circular angle is the length of a circular arc using the Euclidean metric, the hyperbolic angle is the length of a hyperbolic arc using the Minkowski metric.