Search results
Results from the WOW.Com Content Network
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
It is a generalization of the master theorem for divide-and-conquer recurrences, which assumes that the sub-problems have equal size. It is named after mathematicians Mohamad Akra and Louay Bazzi. It is named after mathematicians Mohamad Akra and Louay Bazzi.
The Data Authentication Algorithm (DAA) is a former U.S. government standard for producing cryptographic message authentication codes. DAA is defined in FIPS PUB 113, [1] which was withdrawn on September 1, 2008. [citation needed] The algorithm is not considered secure by today's standards.
Direct Anonymous Attestation (DAA) is a cryptographic primitive which enables remote authentication of a trusted computer whilst preserving privacy of the platform's user. The protocol has been adopted by the Trusted Computing Group (TCG) in the latest version of its Trusted Platform Module (TPM) specification [ 1 ] to address privacy concerns ...
For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...
MacMahon Master theorem (enumerative combinatorics) Maharam's theorem (measure theory) Mahler's compactness theorem (geometry of numbers) Mahler's theorem (p-adic analysis) Maier's theorem (analytic number theory) Malgrange preparation theorem (singularity theory) Malgrange–Ehrenpreis theorem (differential equations)
He explained the title as follows: "a Master Theorem from the masterly and rapid fashion in which it deals with various questions otherwise troublesome to solve." The result was re-derived (with attribution) a number of times, most notably by I. J. Good who derived it from his multilinear generalization of the Lagrange inversion theorem .