Search results
Results from the WOW.Com Content Network
The Möbius function () is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. [i] [ii] [2] It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula.
In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius .
Möbius transform, transform involving the Möbius function; Möbius inversion formula, in number theory; Möbius transformation, a particular rational function in geometry and complex analysis; Möbius configuration, in geometry, a certain configuration in Euclidean space or projective space, consisting of two mutually inscribed tetrahedra
In mathematics, a Möbius strip, Möbius band, or Möbius loop [a] is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE .
The central idea of the method is expressed by the following identity, sometimes called the Legendre identity: (,) =; = | |,where A is a set of integers, P is a product of distinct primes, is the Möbius function, and is the set of integers in A divisible by d, and S(A, P) is defined to be:
The Möbius strip is one of the most famous objects in mathematics. Discovered in 1858 by two German mathematicians—August Ferdinand Möbius and Johann Benedict Listing—the Möbius strip is a ...
Many mathematical concepts are named after him, including the Möbius plane, the Möbius transformations, important in projective geometry, and the Möbius transform of number theory. His interest in number theory led to the important Möbius function μ(n) and the Möbius inversion formula. In Euclidean geometry, he systematically developed ...
The generating function of the Möbius function is the inverse of the zeta function: = =, > Consider two arithmetic functions a and b and their respective generating functions F a ( s ) and F b ( s ).