Search results
Results from the WOW.Com Content Network
Lattice reduction in two dimensions: the black vectors are the given basis for the lattice (represented by blue dots), the red vectors are the reduced basis. In mathematics, the goal of lattice basis reduction is to find a basis with short, nearly orthogonal vectors when given an integer lattice basis as input. This is realized using different ...
The Korkine–Zolotarev (KZ) lattice basis reduction algorithm or Hermite–Korkine–Zolotarev (HKZ) algorithm is a lattice reduction algorithm. For lattices in R n {\displaystyle \mathbb {R} ^{n}} it yields a lattice basis with orthogonality defect at most n n {\displaystyle n^{n}} , unlike the 2 n 2 / 2 {\displaystyle 2^{n^{2}/2}} bound of ...
An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.
Lattice reduction algorithms aim, given a basis for a lattice, to output a new basis consisting of relatively short, nearly orthogonal vectors. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) was an early efficient algorithm for this problem which could output an almost reduced lattice basis in polynomial time. [33]
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions support important standards of post-quantum cryptography. [1]
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
Nearby lattice points are continually examined until the area or volume enclosed is the correct area or volume for a primitive cell. Alternatively, if the basis vectors of the lattice are reduced using lattice reduction only a set number of lattice points need to be used. [10]
In general terms, ideal lattices are lattices corresponding to ideals in rings of the form [] / for some irreducible polynomial of degree . [1] All of the definitions of ideal lattices from prior work are instances of the following general notion: let be a ring whose additive group is isomorphic to (i.e., it is a free -module of rank), and let be an additive isomorphism mapping to some lattice ...