Search results
Results from the WOW.Com Content Network
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films .
For example, one-phonon (infrared) absorption in pure diamond lattice is forbidden because the lattice has an inversion center. However, introducing any defect (even "very symmetrical", such as N-N substitutional pair) breaks the crystal symmetry resulting in defect-induced infrared absorption, which is the most common tool to measure the ...
The geological definition of mineral normally excludes compounds that occur only in living organisms. However, some minerals are often biogenic (such as calcite) or organic compounds in the sense of chemistry (such as mellite). Moreover, living organisms often synthesize inorganic minerals (such as hydroxylapatite) that also occur in rocks.
When the vapor source is a liquid or solid, the process is called physical vapor deposition (PVD), [3] which is used in semiconductor devices, thin-film solar panels, and glass coatings. [4] When the source is a chemical vapor precursor, the process is called chemical vapor deposition (CVD).
N-type diamond films are reproducibly synthesized by phosphorus doping during chemical vapor deposition. [35] Diode p-n junctions and UV light emitting diodes (LEDs, at 235 nm) have been produced by sequential deposition of p-type (boron-doped) and n-type (phosphorus-doped) layers. [36]
In chemistry, a precursor is a compound that contributes in a chemical reaction and produces another compound, or a chemical substance that gives rise to another more significant chemical product. Since several years metal-organic compounds are widely used as molecular precursors for the chemical vapor deposition process (MOCVD).
A more advanced method using an aqueous solution was started in 1600 CE while the melt and vapor methods began around 1850 CE. [6] Single-crystal growth methods tree diagram. Basic crystal growth methods can be separated into four categories based on what they are artificially grown from: melt, solid, vapor, and solution. [2]
Moreover, nanodiamond can be exploited as sensor for some specific analytes. Boron-doped diamond (BDD) produced by energy-assisted (plasma or hot filament, HF) Chemical Vapor Deposition (CVD) processes is a good candidatein Dopamine detection, however it is not selective towards some interferents.