Search results
Results from the WOW.Com Content Network
A fold axis "is the closest approximation to a straight line that when moved parallel to itself, generates the form of the fold". [2] (Ramsay 1967). A fold that can be generated by a fold axis is called a cylindrical fold. This term has been broadened to include near-cylindrical folds. Often, the fold axis is the same as the hinge line. [3] [4]
A detachment fold, in geology, occurs as layer parallel thrusting along a decollement (or detachment) develops without upward propagation of a fault; the accommodation of the strain produced by continued displacement along the underlying thrust results in the folding of the overlying rock units. As a visual aid, picture a rug on the floor.
John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a central inversion .
C i (equivalent to S 2) – inversion symmetry; C 2 – 2-fold rotational symmetry; C s (equivalent to C 1h and C 1v) – reflection symmetry, also called bilateral symmetry. Patterns on a cylindrical band illustrating the case n = 6 for each of the 7 infinite families of point groups. The symmetry group of each pattern is the indicated group.
A high-index reflective subgroup is the prismatic octahedral symmetry, [4,3,2] (), order 96, subgroup index 4, (Du Val #44 (O/C 2;O/C 2) *, Conway ± 1 / 24 [O×O].2). The truncated cubic prism has this symmetry with Coxeter diagram and the cubic prism is a lower symmetry construction of the tesseract, as .
The vergence of a fold lies parallel to the surrounding surfaces of a fold, so if these surrounding surfaces are not horizontal, the vergence of the fold will be inclined. For a fold, the direction and the extent to which vergence occurs can be calculated from the strike and dip of the axial surfaces, along with that of the enveloping surfaces ...
In geology, 3D fold evolution is the study of the full three dimensional structure of a fold as it changes in time. A fold is a common three-dimensional geological structure that is associated with strain deformation under stress .
The pattern represented by every finite patch of tiles in a Penrose tiling occurs infinitely many times throughout the tiling. They are quasicrystals: implemented as a physical structure a Penrose tiling will produce diffraction patterns with Bragg peaks and five-fold symmetry, revealing the repeated patterns and fixed orientations of its tiles ...