Search results
Results from the WOW.Com Content Network
In diagnostic radiology, the F-factor is the conversion factor between exposure to ionizing radiation and the absorbed dose from that radiation. In other words, it converts between the amount of ionization in air (roentgens or, in SI units, coulombs per kilogram of absorber material) and the absorbed dose in air (rads or grays).
The roentgen or röntgen (/ ˈ r ɛ n t ɡ ə n,-dʒ ə n, ˈ r ʌ n t-/; [2] symbol R) is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air (statcoulomb per kilogram).
The roentgen equivalent man (rem) [1] [2] is a CGS unit of equivalent dose, effective dose, and committed dose, which are dose measures used to estimate potential health effects of low levels of ionizing radiation on the human body.
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
The equivalent dose is calculated by multiplying the absorbed energy, averaged by mass over an organ or tissue of interest, by a radiation weighting factor appropriate to the type and energy of radiation. To obtain the equivalent dose for a mix of radiation types and energies, a sum is taken over all types of radiation energy dose. [1]
Dose area product (DAP) is a quantity used in assessing the radiation risk from diagnostic X-ray radiography examinations and interventional procedures, like angiography.It is defined as the absorbed dose multiplied by the area irradiated, expressed in gray-centimetres squared (Gy·cm 2 [1] – sometimes the prefixed units dGy·cm 2, mGy·cm 2 or cGy·cm 2 are also used). [2]
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.
In radiation physics, kerma is an acronym for "kinetic energy released per unit mass" (alternately, "kinetic energy released in matter", [1] "kinetic energy released in material", [2] or "kinetic energy released in materials" [3]), defined as the sum of the initial kinetic energies of all the charged particles liberated by uncharged ionizing radiation (i.e., indirectly ionizing radiation such ...