Search results
Results from the WOW.Com Content Network
In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem (sometimes the Burke's output theorem [1]) is a theorem (stated and demonstrated by Paul J. Burke while working at Bell Telephone Laboratories) asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ:
[6] [7] For an example of the notation, the M/M/1 queue is a simple model where a single server serves jobs that arrive according to a Poisson process (where inter-arrival durations are exponentially distributed) and have exponentially distributed service times (the M denotes a Markov process).
In queueing theory, a discipline within the mathematical theory of probability, a Jackson network (sometimes Jacksonian network [1]) is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution.
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]
In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]
Arrivals occur at rate λ according to a Poisson process and move the process from state i to i + 1. Service times have an exponential distribution with rate parameter μ in the M/M/1 queue, where 1/μ is the mean service time. All arrival times and services times are (usually) assumed to be independent of one another. [2]
In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server. [1]
An M/M/∞ queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers currently being served. Since, the number of servers in parallel is infinite, there is no queue and the number of customers in the systems coincides with the number of customers being served at any moment.