enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).

  3. Generating function transformation - Wikipedia

    en.wikipedia.org/wiki/Generating_function...

    The next formulas for powers, logarithms, and compositions of formal power series are expanded by these polynomials with variables in the coefficients of the original generating functions. [ 4 ] [ 5 ] The formula for the exponential of a generating function is given implicitly through the Bell polynomials by the EGF for these polynomials ...

  4. Stirling numbers and exponential generating functions in ...

    en.wikipedia.org/wiki/Stirling_numbers_and...

    This article uses the coefficient extraction operator [] for formal power series, as well as the (labelled) operators (for cycles) and (for sets) on combinatorial classes, which are explained on the page for symbolic combinatorics. Given a combinatorial class, the cycle operator creates the class obtained by placing objects from the source ...

  5. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...

  6. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

  7. Probability-generating function - Wikipedia

    en.wikipedia.org/.../Probability-generating_function

    The probability generating function is an example of a generating function of a sequence: see also formal power series. It is equivalent to, and sometimes called, the z-transform of the probability mass function.

  8. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    where the notation [] means extraction of the coefficient of from the following formal power series (see the non-exponential Bell polynomials and section 3 of [7]). More generally, sums related to these weighted harmonic number expansions of the Stirling numbers of the first kind can be defined through generalized zeta series transforms of ...

  9. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...