enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Gravity field surrounding Earth from a macroscopic perspective. Newton's law of universal gravitation can be written as a vector equation to account for the direction of the gravitational force as well as its magnitude. In this formula, quantities in bold represent vectors.

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  6. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of Earth's gravity, on or near its surface, by means of a mathematical model. The most common theoretical model is a rotating Earth ellipsoid of revolution (i.e., a spheroid ).

  7. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass.

  8. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...

  9. Geopotential spherical harmonic model - Wikipedia

    en.wikipedia.org/wiki/Geopotential_spherical...

    For this the gravitational force, i.e. the gradient of the potential, must be computed. Efficient recursive algorithms have been designed to compute the gravitational force for any N z {\displaystyle N_{z}} and N t {\displaystyle N_{t}} (the max degree of zonal and tesseral terms) and such algorithms are used in standard orbit propagation software.