enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Q10 (temperature coefficient) - Wikipedia

    en.wikipedia.org/wiki/Q10_(temperature_coefficient)

    The effects of temperature on enzyme activity. Top - increasing temperature increases the rate of reaction (Q 10 coefficient). Middle - the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom - consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.

  3. Enzyme assay - Wikipedia

    en.wikipedia.org/wiki/Enzyme_assay

    Most enzymes are sensitive to pH and have specific ranges of activity. All have an optimum pH. The pH can stop enzyme activity by denaturating (altering) the three-dimensional shape of the enzyme by breaking ionic, and hydrogen bonds. Most enzymes function between a pH of 6 and 8; however pepsin in the stomach works best at a pH of 2 and ...

  4. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    The effects of temperature on enzyme activity. Top: increasing temperature increases the rate of reaction (Q10 coefficient). Middle: the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom: consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.

  5. Proteinase K - Wikipedia

    en.wikipedia.org/wiki/Proteinase_K

    Proteinase K is also stable over a wide pH range (4–12), with a pH optimum of pH 8.0. [5] An elevation of the reaction temperature from 37 °C to 50–60 °C may increase the activity several times, like the addition of 0.5–1% sodium dodecyl sulfate (SDS) or Guanidinium chloride (3 M), Guanidinium thiocyanate (1 M) and urea (4 M) [ disputed ...

  6. Enzyme unit - Wikipedia

    en.wikipedia.org/wiki/Enzyme_unit

    The enzyme unit, or international unit for enzyme (symbol U, sometimes also IU) is a unit of enzyme's catalytic activity. [ 1 ] 1 U (μmol/min) is defined as the amount of the enzyme that catalyzes the conversion of one micro mole of substrate per minute under the specified conditions of the assay method .

  7. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    Although the active site occupies only ~10–20% of the volume of an enzyme, [1]: 19 it is the most important part as it directly catalyzes the chemical reaction. It usually consists of three to four amino acids, while other amino acids within the protein are required to maintain the tertiary structure of the enzymes.

  8. Pectinase - Wikipedia

    en.wikipedia.org/wiki/Pectinase

    Pectinase enzymes used today are naturally produced by fungi and yeasts (50%), insects, bacteria and microbes (35%) and various plants (15%), [4] but cannot be synthesized by animal or human cells. [5] In plants, pectinase enzymes hydrolyze pectin that is found in the cell wall, allowing for new growth and changes to be made.

  9. Xylose isomerase - Wikipedia

    en.wikipedia.org/wiki/Xylose_isomerase

    The L. lactis strain is stable over the pH range of 6.5 to 11.0, and the L. brevis enzyme, which is less tolerant of pH changes, show activity over the pH range of 5.7–7.0. [14] Thermal tests were also done by Kei Y. and Noritaka T. and the xylose isomerase was found to be thermally stable to about 60 degrees Celsius [ 14 ]